
Colored Convex Linear Orders and Logical Limit Laws

Matthew Kukla

Abstract

We extend previous work on logical limit laws for several classes of ordered structures to the
case of structures equipped with a coloring.

1 Introduction

In [1], first-order logical limit laws were proven for convex linear orders by adapting a Markov
chain-style proof of Ehrenfeucht. We present a generalization of this argument to the case of
convex linear orders equipped with a coloring (henceforth, “colored convex linear orders” or
“CCLOs”). These colorings are expressed by expanding the language of convex linear orders to
include a countable number of unary predicates, each indicating the color of a point. Every point
is assigned a color, and multiple points may have the same color.

Many of the proofs here will follow similar arguments to those in of [1]. We present this note
as one set of examples demonstrating how Markov chain arguments may be extended to show
limit laws for broader classes of ordered structures.

2 Preliminaries

The language of t-colored convex linear orders, for t ∈ N, is given by Lt = {<,E,C1(x), . . . , Ct(x)},
where < is a total order on points, E is an equivalence relation whose classes are <-intervals,
and C1(x), . . . , Ct(x) are unary predicates (each corresponding to a “color”). A t-colored convex
linear order (t-CCLO) is a finite Lt-structure M such that, for each point x in M, there is exactly
one 1 ≤ i ≤ t where Ci(x) holds. Stated formally, we require that each Ci(x) satisfies:

Ci(x) ⇐⇒ ¬
t∨

1≤ℓ≤t
ℓ ̸=i

Cℓ(x)

We say that x is an i-colored point when Ci(x) holds.

Definition 2.1. Let •i denote the CCLO with one class, containing one i-colored point.

Definition 2.2. For CCLOs M, N, define M⊕N to be the CCLO such that N comes after M
with respect to <.

Definition 2.3. Let M be a CCLO. Define M̂i to be the CCLO obtained by adding one i-colored
point to the <-last class of M.

We will denote the empty CCLO by �O. As this structure contains no classes, �̂O
i
is not

defined.

Lemma 2.4. Any t-CCLO of size n can be constructed uniquely, in n steps, by applying (̂−)
i

and −⊕ •i to�O.

Proof. We follow an inductive argument in the same spirit as Lemma 2.4 of [1]. Let N be a
CCLO of size n having t colors. If n = 1, N contains a single point of some color i; this is
equivalent to�O⊕ •i.
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Assume now that any CCLO of size n− 1 can be constructed from the above operations. For
some CCLO N of size n, let M denote N minus the <-last point. If the last class of N contains
exactly one i-colored point, N ≃ M⊕ •i. Otherwise, the last point of N is obtained as M̂i.

Example 2.5. Suppose we are working in the language of CCLOs with two colors, drawn
pointwise as ◦ and •. Depicting E-classes with square brackets, and reading < as left-to-right,
we can visualize all 2-CCLOs of size n as shown in 2.5 for n = 0, 1, 2.

��O

[◦] [•]

[◦◦] [◦•] [◦][◦] [◦][•] [•][◦] [•][•] [•◦] [••]

...
...

Figure 1: Constructing all 2-CCLOs of size 0, 1, 2

We write M ≡k N to mean structures M, N agree up to first-order sentences with a maximum
quantifier depth of k. This is equivalent to requiring that Duplicator has a winning strategy in a
length k Ehrenfeucht–Fräıssé game [2].

Lemma 2.6. Let M,N,M′,N′ be CCLOs with M ≡k N and M′ ≡k N′. Then,

1. M⊕M′ ≡k N⊕N′

2. For k ∈ N, there exists ℓ ∈ N such that for all s, t > ℓ,⊕
s

M ≡k

⊕
t

M

Proof. These are Lemmas 2.7 and 2.10 in [1].

Lemma 2.7. Suppose M ≡k N, then, M̂i ≡k N̂i.

Proof. We construct a winning strategy for Duplicator. If Spoiler plays any point in M or N,
Duplicator responds with the corresponding point as they would in a game between M and N
(such a response is guaranteed to exist because M ≡k N). In the situation that Spoiler selects
the last i-colored point in either structure, Duplicator responds with the corresponding point
added in the other structure.

3 Constructing a Markov chain

Fix a first-order sentence φ in Lt with quantifier rank k. We associate a Markov chain Mφ to φ
in a manner similar to the uncolored case.

For a ≡k-class C, and any M ∈ C, define

C ⊕ •i := [M⊕ •i]≡k

Ĉi :=
[
M̂i

]
≡k

By Lemmas 2.7 and 2.6, any choice of representative M will yield a ≡k-equivalent result. We
define Mφ recursively. The starting state is�O. There are t possible transitions out of�O to
•1, . . . , •t, each having probability 1/t. These initial transitions move only to CCLOs obtained

from − ⊕ •i due to the fact that (̂−)
i
is not defined on�O. For every C ̸≃�O, there are 1/2t
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transitions out: one to Ĉi and one to C ⊕ •i (for each 1 ≤ i ≤ t). Because any t-CCLO can be

constructed uniquely by applying −⊕ •i and (̂−)
i
to�O repeated n times, this procedure will

uniformly randomly sample all t-CCLO structures of size n.

C ⊕ •1

•1 C ⊕ •t

�O C

•t Ĉ1

Ĉt

1/t

1/t

1/2t

1/2t

1/2t

1/2t
··
·

...

...

In order for this Markov chain to converge, we require that it is aperiodic in the sense of
Definition 2.11 of [1].

Lemma 3.1. Mφ is aperiodic for all φ.

Proof. We follow the same argument as Lemma 2.13 of [1]. Suppose Mφ were periodic. Then,
there would exist disjoint sets of Mφ-states (≡k-classes) P0, P1, . . . , Pd−1 for some d > 1 such
that for every state in Pi, Mφ transitions to a state in Pi+1 with probability 1 (with Pd−1

transitioning to P0). Writing j•i to mean
⊕

j •i, we have that for any C ∈ P0, C ⊕ j•i is in P0 iff
d | j. From Lemmas 2.6 and 2.6, C ⊕ j•i ≡k C ⊕ (j + 1)•i for sufficiently large j, contradicting
this.

Theorem 3.2. The class of t-CCLOs admits a logical limit law for all t ∈ N.

Proof. Consider Mφ for some fixed φ. In any state of Mφ (a ≡k-class) S, either every structure in

S satisfies φ or no structures in S satisfy φ. By the definitions of −⊕•i and (̂−)
i
for ≡k-classes,

moving n steps in Mφ (starting from�O) is equivalent to uniformly randomly selecting a CCLO
of size n and taking its ≡k-class. Hence, the probability of Mφ being in a state which satisfies
φ after n steps is equal to the probability that a randomly selected CCLO of size n satisfies
φ. It is sufficient to show that the probability of Mφ being in a satisfactory state after n steps
converges as n → ∞; this follows from the fact that Mφ is finite and aperiodic.

4 Reduction to the uncolored case

We briefly note that limit laws for uncolored convex linear orders can be obtained as a special
case of 3.2. An uncolored structure may be equivalently viewed as a colored structure with
exactly one color. Hence, the relation C1(x) holds for every point x, so that there is no distinction
in terms of color on the points.

We have two operations for building such structures: (̂−)
1
and −⊕ •1. These are equivalent

to the corresponding operators (̂−) and −⊕• in Definition 2.2 and Lemma 2.4 respectively of [1].
Because there is only one color, the subscripts are dropped hereafter. Following the procedure in
3, we construct Mφ for first-order sentence φ as:
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•̂ · · ·

��O •

• ⊕ • · · ·

1

1/2

1/2

The initial transition has probability 1, as there is only one way to construct • from the empty
order. From this diagram, it can be seen that moving n steps in Mφ is equivalent to moving
n− 1 steps in the Markov chain defined by [1], due to the fact that the latter is defined starting
at • rather than�O. The two Markov chains will converge to the same limiting probability as
n → ∞.
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