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Introduction: zero-one laws

Definition

A class C of structures in some first-order language admits a
zero-one law if, for any sentence ¢, the probability that a
randomly selected C-structure of size n satisfies ¢ converges
asymptotically to zero or one as n — oo.
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Definition

A class C of structures in some first-order language admits a
zero-one law if, for any sentence ¢, the probability that a
randomly selected C-structure of size n satisfies ¢ converges
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@ Classical example: finite graphs [Glebskii et. al]
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Introduction: zero-one laws

Definition

A class C of structures in some first-order language admits a
zero-one law if, for any sentence ¢, the probability that a
randomly selected C-structure of size n satisfies ¢ converges
asymptotically to zero or one as n — oo.

@ Classical example: finite graphs [Glebskii et. al]
@ Convergence to zero or one is a rather strict requirement
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Introduction: logical limit laws

Definition

A class C of structures in some first-order language admits a
logical limit law if, for any sentence ¢, the probability that a
randomly selected C-structure of size n satisfies ¢ converges
asymptotically (not necessarily to zero or one) as n — co.
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Introduction: logical limit laws

Definition

A class C of structures in some first-order language admits a
logical limit law if, for any sentence ¢, the probability that a
randomly selected C-structure of size n satisfies ¢ converges
asymptotically (not necessarily to zero or one) as n — co.

@ “Unlabeled limit law” — class of unlabeled structures
admits a limit law

@ “Labeled limit law” — class of labeled structures admits a
limit law
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Introduction: main results

Convex linear orders and layered permutations admit both
unlabeled and labeled limit laws. Compositions admit an
unlabeled limit law.
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Convex linear orders

Definition
Let £ be the language containing two binary relations: < and
E. A convex linear order is an £-structure satisfying:

@ < is a total order on points

@ E is an equivalence relation

@ xEzx<y<z=zEXx,y
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Sum operators

Definition

Let € be a convex linear order. Define € to be the convex linear
order obtained by adding one additional point to the last class
of €.
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Sum operators

Definition

Let € be a convex linear order. Define € to be the convex linear
order obtained by adding one additional point to the last class
of €.

Definition
For convex linear orders €, D, define € ® D as the convex linear
order placing © <-after €.

V.
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Constructing convex linear orders

Every finite convex linear order containing n points can be

uniquely constructed by applying (—A) and/or —@eto e
repeatedly.
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Constructing convex linear orders

Every finite convex linear order containing n points can be

uniquely constructed by applying (—A) and/or —@eto e
repeatedly.

Proceed by induction.
@ Base case: n =1 trivial
@ When n = 2, two possible cases: € ~edeor € ~'e
@ In general: last class of € contains one or more points.
Apply — @ e or (—’\) appropriately. O
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Ehrenfeucht—Fraissé games

@ Ehrenfeucht-Fraissé game on two structures:
back-and-forth game between players Spoiler and
Duplicator in which corresponding points are marked on
each structure

@ In game of length k between A and B, Duplicator has a
winning strategy iff A and B agree on all sentences of
quantifier depth at most k.

@ Write A =, B in this case
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Equivalences

Let 93¢, 0, N, N’ be convex linear orders such that Mt =, I and
M’ =, N’. The following equivalences hold:

@ M =, NN

Ogﬁ k‘Jt
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Equivalences

For a convex linear order 9t and k € IN, there exists ¢ € IN such

that for all s, t > ¢,

e
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The limit law

@ Labeled limit laws: count all possible structures over
[n]:={1,...,nfasn— oo
@ Unlabeled: count all structures up to isomorphism
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The limit law

@ Labeled limit laws: count all possible structures over
[n]:={1,...,nfasn— oo
@ Unlabeled: count all structures up to isomorphism

@ Finite linearly ordered structures have no nontrivial
automorphisms, hence, no distinction in this case
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The limit law

General idea:

@ For first-order sentence ¢ (with quantifier rank k),
associate a Markov chain M,

@ States of M,, are =,-classes

@ Probability that randomly selected structure of size n
satisfies ¢ is probability that M, is in a state that satisfies ¢
after n transitions
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The limit law

For an =,-class C, define
Coe:=[Nael|_

and L
C:= [Em]Ek
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The limit law

For ¢ an L-sentence (with quantifier depth k), construct a
Markov chain M, as follows:

@ Starting state: [e],

@ From any =,-class C, there are two possible transitions
out: to Ca e or C

@ Each transition probability is 1/2
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The limit law

A Markov chain M is fully aperiodic if there do not exist disjoint
sets of M-states Pg, P, ..., P4_1 for some d > 1 such that for
every state in P;, M transitions to a state in P; 4 with probability

1 (with P4—4 transitioning to Py).

Let M be a finite, fully aperiodic Markov chain with initial state
S, and let Pr™~'(S, Q) denote the probability that M is in state
Q after n— 1 steps. For any Q, limp_.. Pr"~1(S, Q) converges.
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The limit law

M, is fully aperiodic for any first-order sentence ¢.

Suppose M, were not fully aperiodic.

@ There would exist disjoint sets of M,,-states (=-classes)
Po, P4, ..., Pg_4 for d > 1 where every state in P;, M,
transitions to a state in P;; 1 with probability 1 (Py_1
transitioning to Po).

@ Thus, forany Q € Py, Q@ e isin Py iff d | i.

@ By equivalence lemmas, this is not possible
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The limit law

Convex linear orders admit a logical limit law.

Fix a first-order sentence ¢, and consider M,,.

@ For each state S in M), either each structure in S satisfies
@ or no structures in S satisfy ¢.

@ Let S, denote the set of states in M,, for which all
structures in that state satisfy ¢.

—

@ (—) and — @ e are well-defined on =,-classes, hence,
moving n — 1 steps in M,, is equivalent to starting with any

structure in the current state, applying (—) or —®e n—1
times, and taking the =-class.
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The limit law

Proof (continued)

@ The probability that after n steps, M, is in a state of S,
equals probability that uniformly randomly selected
structure of size n satisfies ¢

@ Suffices to show that limp— e Zoes(p Prn-1 (e, Q) converges,
which follows from Markov chain lemma O
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Q Uniform interdefinability
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Transfer lemmas

Fix languages Ly, L1 and classes Cy, C1 of Ly, L1 structures
respectively.

Let f be a map from the set of Ly-structures to the set of
Lq-structures, and g a map from the set of Lp-sentences to the
set of L4-sentences such that, for any Cy-structure 9t and
Ly-sentence ¢:

Q Mg = (M) Eg(p)

Q@ fis a bijection between Cq and C; structures of size n

@ The class C admits a logical limit law
Then, Co admits a logical limit law as well.
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Uniform interdefinability

Definition

Classes Cp and C1 of structures (over a common domain of [n])
are said to be uniformly interdefinable if there exists a map

fi: Co — C1 (bijective on structures), along with formulae

PRy, PRy, for each relation Ry in Lo and Ry in L4 such that,
for each iy in Co and Wiy in Cy:

o EIRO |: RO,,'()_() — f/(gﬁo) |: QDROJ.()_()
° My = Ry i(X) &= £ (M) = ¢, (%)
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Uniform interdefinability
Theorem .. |

Let Co, C1 be uniformly interdefinable classes of Lo, L1
structures. If Cy admits a logical limit law, Cy admits one as
well.

Take the transfer maps f, g to be:
@ f=1

@ gis the map sends an Lp-sentence to the £L-sentence
with each ocurrence of Ro; replaced with ¢pg,;
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@ Layered permutations
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Layered permutations

@ Permutations can be viewed as structures in the language
L = {<4, <o} with two linear orders. The order <1 gives the
unpermuted order of the points (before applying the
permutation) and <, describes the points in permuted
order.

@ Blocks are maximal subsets which are monotone
<q/<o-intervals

@ A layered permutation is composed of increasing blocks,
each of which contains a decreasing permutation
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Layered permutations

<4
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Layered permutations

Layered permutations and convex linear orders are uniformly
interdefinable.

Define f; to be the map taking blocks of a layered permutation
to classes of a convex linear order, and points in an
order-preserving manner. The relations <1 and <z are rewritten
as:

@ p,:a<ybwax<b

@ p,:a<sbw(aEbAb<a)Vv(-(aEb)rna<b)
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Layered permutations

fi(Mo)

H

fi

I

*r——>
o>
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Layered permutations

Layered permutations admit a logical limit law.

Layered permutations are uniformly interdefinable with convex
linear orders. Because convex linear orders admit a logical limit
law, layered permutations admit one as well. O
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e Compositions
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Fractured orders

@ Let Ly = {E, <} be the language of convex linear orders
@ Define L1 = {E, <1, <2}

@ Fractured orders take a convex linear order < and break it
into two parts: <1 between E-classes, and <» within
E-classes.
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Fractured orders

Definition

A fractured order is an L1-structure satisfying:
@ <, <o are partial orders
@ E is an equivalence relation

© Distinct points a, b are <{-comparable iff they are not
E-related

© Distinct points a, b are <>-comparable iff they are
E-related

@ aEa’,a<i b= a <i b (convexity)

.

We denote the class of all finite fractured orders by 7.
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Fractured orders

Fractured orders and convex linear orders are uniformly
interdefinable.

Define f; : F# — Cp such that:
eV FaEb < f,(iI)h)l:aEb
oM EFa<ib < fiMy)=—-aEbAra<b
e EFa<eb < fiMy)EaEbAna<b

This map satisfies the requirements for uniform
interdefinability. O
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Reducts and limit laws

Let £ be a language and £’ c L. Given a class C of
L-structures which admits a logical limit law, any class C’ of
L’-structures which expand uniquely to C-structures also
admits a logical limit law.
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Reducts and limit laws

Let £ be a language and £’ c L. Given a class C of
L-structures which admits a logical limit law, any class C’ of
L’-structures which expand uniquely to C-structures also

admits a logical limit law.

Construct the transfer maps f and g from earlier:
@ fis taken to be the map sending a structure in C’ to its
unique expansion in C
@ This expansion is unique, hence f is bijective on structures
of size n for all n
@ g is given by the identity map on formulas

O
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@ Compositions are structures in the reduct Lo ¢ L4 given
by L> = {E, <1}

@ Order defined on equivalence classes, but not on points
within each class
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Every composition expands uniquely to a fractured order, up to
isomorphism. |
There is a unique way to linearly order each E-class

individually. Because ordering these classes determines <5,

there is a unique way to define <o on any composition,
expanding it to a fractured order. O
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The class of compositions admit an unlabeled logical limit law.

The language of compositions is a reduct of the language of
fractured orders, and every composition expands uniquely to a
fractured order. The class of fractured orders admits a logical
limit law, therefore, by the previous lemma, compositions admit
a limit law as well. O
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